Abstract

Two methods are presented for approximating the costate of optimal control problems in integral form using orthogonal collocation at Legendre–Gauss (LG) and Legendre–Gauss–Radau (LGR) points. It is shown that the derivative of the costate of the continuous-time optimal control problem is equal to the negative of the costate of the integral form of the continuous-time optimal control problem. Using this continuous-time relationship between the differential and integral costate, it is shown that the discrete approximations of the differential costate using LG and LGR collocation are related to the corresponding discrete approximations of the integral costate via integration matrices. The approach developed in this paper provides a way to approximate the costate of the original optimal control problem using the Lagrange multipliers of the integral form of the LG and LGR collocation methods. The methods are demonstrated on two examples where it is shown that both the differential and integral costate converge exponentially as a function of the number of LG or LGR points. Copyright © 2014 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.