Abstract
A unified framework is presented for the numerical solution of optimal control problems using collocation at Legendre–Gauss (LG), Legendre–Gauss–Radau (LGR), and Legendre–Gauss–Lobatto (LGL) points. It is shown that the LG and LGR differentiation matrices are rectangular and full rank whereas the LGL differentiation matrix is square and singular. Consequently, the LG and LGR schemes can be expressed equivalently in either differential or integral form, while the LGL differential and integral forms are not equivalent. Transformations are developed that relate the Lagrange multipliers of the discrete nonlinear programming problem to the costates of the continuous optimal control problem. The LG and LGR discrete costate systems are full rank while the LGL discrete costate system is rank-deficient. The LGL costate approximation is found to have an error that oscillates about the true solution and this error is shown by example to be due to the null space in the LGL discrete costate system. An example is considered to assess the accuracy and features of each collocation scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.