Abstract

Climate change is the world's most prominent environmental problem, and fossil-fuel combustion is its primary cause. To set carbon reduction goals, policy makers require information on feasibility and cost of renewable energy systems. In this study, we describe an economic approach to modeling a national electricity system based entirely on renewable sources, using the island-nation of Mauritius as a case study.Many renewable electricity studies consider levelized costs of electricity (LCOE), which represents average cost of electricity, but cost minimization requires equalizing marginal costs. With variable sources, marginal costs change over time. Minimizing cost thus requires a model incorporating variability at high time resolution (daily or hourly), with the objective of minimizing the levelized cost of electricity for an entire electricity system (LCOES).In Mauritius, the minimum-cost renewable electricity portfolio includes roughly equal proportions of solar, wind, and biomass electricity, along with electricity storage. Policy issues include setting renewable energy targets, selecting policy instruments to incentivize optimum renewable energy portfolios, incorporating energy efficiency, determining appropriate discount rates, ensuring land availability, and accounting for non-cost considerations. Many of the economic and policy issues identified apply universally, and methods demonstrated in this study could be used anywhere in the world.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call