Abstract
Dybvig (1988a, 1988b) solves in a complete market setting the problem of finding a payoff that is cheapest possible in reaching a given target distribution (“cost-efficient payoff”). In the presence of ambiguity, the distribution of a payoff is, however, no longer known with certainty. We study the problem of finding the cheapest possible payoff whose worst-case distribution stochastically dominates a given target distribution (“robust cost-efficient payoff”) and determine solutions under certain conditions. We study the link between “robust cost-efficiency” and the maxmin expected utility setting of Gilboa and Schmeidler (1989), as well as more generally in a possibly nonexpected robust utility setting. Specifically, we show that solutions to maxmin robust expected utility are necessarily robust cost-efficient. We illustrate our study with examples involving uncertainty both on the drift and on the volatility of the risky asset.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have