Abstract
In this paper, a single instruction multiple data (SIMD) arithmetic logic unit (ALU)-based architecture is proposed to improve hardware efficiency in a $4 \times 4$ frequency-domain multiple input multiple output–orthogonal frequency division multiplexing modem based on a space-time block code (STBC). The majority of mathematic units in the proposed architecture are centralized so that any mathematic unit can be shared with any algorithm. Six advanced instructions are also defined in the ALU: 1) complex multiplication; 2) complex division; 3) correlation; 4) channel estimation; 5) $4 \times 4$ matrix inversion; and 6) STBC-based decoding. A scheduler is essential to handle all data paths and signaling flows smoothly with the use of an SIMD ALU. As a result, it is relatively easy to reconfigure the proposed design for different specifications. The very large scale integration implementation of this chip, using an in-house 65-nm CMOS process, consumes a total of 1.87 M gates and draws 33.7 mW at a supply voltage of 1 V.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Very Large Scale Integration (VLSI) Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.