Abstract
Aim: This study presents the cost-utility analysis that was developed to inform the NICE health technology assessment of osimertinib vs platinum-based doublet chemotherapy (PDC) in patients with EGFR-T790M mutation-positive non-small cell lung cancer (NSCLC) who have progressed on epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) therapy.Methods and materials: A partitioned survival model with three health states (progression-free, progressed disease, and death) from a UK payer perspective and over lifetime (15 years) was developed. Direct costs included disease management, treatment-related (acquisition, administration, monitoring, adverse events), and T790M testing costs. Efficacy and safety data were taken from clinical trials AURA extension and AURA2 for osimertinib and IMPRESS for PDC. An adjusted indirect treatment comparison was applied to reduce the potential bias in the non-randomized comparison. Parametric functions were utilized to extrapolate survival beyond the observed period. Health state utility values were calculated from EQ-5D data collected in the trials and valued using UK tariffs. Resource use and costs were based on published sources.Results: Osimertinib was associated with a gain of 1.541 quality-adjusted life-years (QALYs) at an incremental cost of £64,283 vs PDC (incremental cost-effectiveness ratio [ICER]: £41,705/QALY gained). Scenario analyses showed that none of the plausible scenarios produced an ICER above £44,000 per QALY gained, and probabilistic sensitivity analyses demonstrated a 63.4% probability that osimertinib will be cost-effective at a willingness-to-pay threshold of £50,000.Limitations: The analysis is subject to some level of uncertainty inherent to phase 2 single-arm data and the immaturity of the currently available survival data for osimertinib.Conclusions: Osimertinib may be considered a cost-effective treatment option compared with PDC in the second-line setting in patients with EGFR-T790M mutation-positive NSCLC from a UK payer perspective. Further data from the ongoing AURA clinical trial program will reduce the inherent uncertainty in the analysis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have