Abstract

BackgroundIslet cell transplantation is a method to stabilize type 1 diabetes patients with hypoglycemia unawareness and unstable blood glucose levels by reducing insulin dependency and protecting against severe hypoglycemia through restoring endogenous insulin secretion. This study analyses the current cost-effectiveness of this technology and estimates the value of further research to reduce uncertainty around cost-effectiveness.MethodsWe performed a cost-utility analysis using a Markov cohort model with a mean patient age of 49 to simulate costs and health outcomes over a life-time horizon. Our analysis used intensive insulin therapy (IIT) as comparator and took the provincial healthcare provider perspective. Cost and effectiveness data for up to four transplantations per patient came from the University of Alberta hospital.Costs are expressed in 2012 Canadian dollars and effectiveness in quality-adjusted life-years (QALYs) and life years. To characterize the uncertainty around expected outcomes, we carried out a probabilistic sensitivity analysis within the Bayesian decision-analytic framework. We performed a value-of-information analysis to identify priority areas for future research under various scenarios. We applied a structural sensitivity analysis to assess the dependence of outcomes on model characteristics.ResultsCompared to IIT, islet cell transplantation using non-generic (generic) immunosuppression had additional costs of $150,006 ($112,023) per additional QALY, an average gain of 3.3 life years, and a probability of being cost-effective of 0.5 % (28.3 %) at a willingness-to-pay threshold of $100,000 per QALY. At this threshold the non-generic technology has an expected value of perfect information (EVPI) of $260,744 for Alberta. This increases substantially in cost-reduction scenarios. The research areas with the highest partial EVPI are costs, followed by natural history, and effectiveness and safety.ConclusionsCurrent transplantation technology provides substantial improvements in health outcomes over conventional therapy for highly selected patients with ‘unstable’ type 1 diabetes. However, it is much more costly and so is not cost-effective. The value of further research into the cost-effectiveness is dependent upon treatment costs. Further, we suggest the value of information should not only be derived from current data alone when knowing that this data will most likely change in the future.Electronic supplementary materialThe online version of this article (doi:10.1186/s12902-016-0097-7) contains supplementary material, which is available to authorized users.

Highlights

  • Islet cell transplantation is a method to stabilize type 1 diabetes patients with hypoglycemia unawareness and unstable blood glucose levels by reducing insulin dependency and protecting against severe hypoglycemia through restoring endogenous insulin secretion

  • In our base-case probabilistic analysis, the incremental cost-effectiveness ratio (ICER) for islet cell transplantation compared with insulin therapy (IIT) was $150,006 per quality-adjusted life-year (QALY) gained

  • We found that transplantations led to prolonging life by on average 3.33 years per patient and to a substantial increase in quality of life

Read more

Summary

Introduction

Islet cell transplantation is a method to stabilize type 1 diabetes patients with hypoglycemia unawareness and unstable blood glucose levels by reducing insulin dependency and protecting against severe hypoglycemia through restoring endogenous insulin secretion. In allogeneic islet cell transplantation the islets, isolated from deceased donors, containing glucose-responsive insulinproducing beta cells, are transplanted to replace the patient’s own beta cells, previously destroyed by the chronic autoimmune disease T1DM [3,4,5] This treatment has substantially improved the lives of patients, by reducing glycemic lability, risk of severe hypoglycemia, so-called “death-in-bed events”, long-term cognitive and physical disability, and in many cases has led to decrease or discontinuation of exogenous insulin therapy for variable periods of time [6,7,8]. Graft survival was defined here, in agreement with Barton and colleagues, as having either full graft function (independence from exogenous insulin for ≥14 consecutive days) or partial graft function (no insulin independence, but with C-peptide secretion ≥0.3 ng/mL) [8]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.