Abstract

Nanostructured transparent conductive electrodes are highly interesting for efficient light management in thin-film solar cells, but they are often costly to manufacture and limited to small scales. This work reports on a low-cost and scalable bottom-up approach to fabricate nanostructured thin-film solar cells. A folded solar cell with increased optical absorber volume was deposited on honeycomb patterned zinc oxide nanostructures, fabricated in a combined process of nanosphere lithography and electrochemical deposition. The periodicity of the honeycomb pattern can be easily varied in the fabrication process, which allows structural optimization for different absorber materials. The implementation of this concept in amorphous silicon thin-film solar cells with only 100 nm absorber layer was demonstrated. The nanostructured solar cell showed approximately 10% increase in the short circuit current density compared to a cell on an optimized commercial textured reference electrode. The concept presented here is highly promising for low-cost industrial fabrication of nanostructured thin-film solar cells, since no sophisticated layer stacks or expensive techniques are required.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.