Abstract
Micro Electro Mechanical Systems (MEMS) and microfluidic devices have found numerous applications in the industrial sector. However, they require a fast, cost-effective and reliable manufacturing process in order to compete with conventional methods. Particularly, at the sub-micron scale, the manufacturing of devices are limited by the dimensional complexity. A proper bonding and stiction prevention of these sub-micron channels are two of the main challenges faced during the fabrication process of low aspect ratio channels. Especially, in the case of using flexible materials such as polydimethylsiloxane (PDMS). This study presents a direct laser microfabrication method of sub-micron channels using an infrared (IR) ultrashort pulse (femtosecond), capable of manufacturing extremely low aspect ratio channels. These microchannels are manufactured and tested varying their depth from 0.5 μm to 2 μm and width of 15, 20, 25, and 30 μm. The roughness of each pattern was measured by an interferometric microscope. Additionally, the static contact angle of each depth was studied to evaluate the influence of femtosecond laser fabrication method on the wettability of the glass substrate. PDMS, which is a biocompatible polymer, was used to provide a watertight property to the sub-micron channels and also to assist the assembly of external microfluidic hose connections. A 750 nm depth watertight channel was built using this methodology and successfully used as a blood plasma separator (BPS). The device was able to achieve 100% pure plasma without stiction of the PDMS layer to the sub-micron channel within an adequate time. This method provides a novel manufacturing approach useful for various applications such as point-of-care devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.