Abstract
This paper presents a home-built projection lithographer designed to transfer the image from a DLP (digital light processing) projector MEMS matrix onto the microscope objective's field of view, where a photoresist-covered substrate is placed. The photoresist is exposed using blue light with a wavelength of 450 nm. To calibrate the device and adjust focal lengths, we utilize a red light that does not affect the photoresist. The substrate is located on a movable platform, allowing the exposure field to be shifted, enabling the exposure of designs with lateral sizes of 1 × 1 cm2 at a resolution of a few micrometers. Our setup showcases a 2 μm resolution for the single frame 200 × 100 μm2, and a 5 μm resolution for 1 × 1 cm2 with field stitching. The exposure speed, approximately 1 mm2/100 s, proves to be sufficient for a variety of laboratory prototyping needs. This system offers a significant advantage due to its utilization of easily accessible and budget-friendly components, thereby enhancing its accessibility for a broader user base. The exposure speed and resolution meet the requirements for laboratory prototyping in the fields of 2D materials, quantum optics, superconducting microelectronics, microfluidics, and biology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.