Abstract
Mirror matter is a stable self-collisional dark matter candidate. If parity is a conserved unbroken symmetry of nature, there could exist a parallel hidden (mirror) sector of the universe composed of particles with the same masses and obeying the same physical laws as our (visible) sector, except for the opposite-handedness of weak interactions. The two sectors interact predominantly via gravity, therefore mirror matter is naturally "dark". Here I review the cosmological signatures of mirror dark matter, concerning thermodynamics of the early universe, big bang nucleosynthesis, primordial structure formation and evolution, cosmic microwave background and large scale structure power spectra. Besides gravity, the effects on primordial nucleosynthesis of the kinetic mixing between photons and mirror photons are considered. Summarizing the present status of research and comparing theoretical results with observations/experiments, it emerges that mirror matter is not just a viable, but a promising dark matter candidate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.