Abstract

We first consider the Einstein-aether theory with a gravitational coupling and a Lagrange multiplier field, and then consider the non-minimally coupled quintessence field theory with Lagrange multiplier field. We study the influence of the Lagrange multiplier field on these models. We show that the energy density evolution of the Einstein-aether field and the quintessence field are significantly modified. The energy density of the Einstein-aether is nearly a constant during the entire history of the Universe. The energy density of the quintessence field can also be kept nearly constant in the matter dominated Universe, or even exhibit a phantom-like behavior for some models. This suggests a possible dynamical origin of the cosmological constant or dark energy. Further more, for the canonical quintessence in the absence of gravitational coupling, we find that the quintessence scalar field can play the role of cold dark matter with the introduction of a Lagrange multiplier field. We conclude that the Lagrange multiplier field could play a very interesting and important role in the construction of cosmological models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call