Abstract
It is shown that the close connection between event horizons and thermodynamics which has been found in the case of black holes can be extended to cosmological models with a repulsive cosmological constant. An observer in these models will have an event horizon whose area can be interpreted as the entropy or lack of information of the observer about the regions which he cannot see. Associated with the event horizon is a surface gravity kappa which enters a classical ''first law of event horizons'' in a manner similar to that in which temperature occurs in the first law of thermodynamics. It is shown that this similarity is more than an analogy: An observer with a particle detector will indeed observe a background of thermal radiation coming apparently from the cosmological event horizon. If the observer absorbs some of this radiation, he will gain energy and entropy at the expense of the region beyond his ken and the event horizon will shrink. The derivation of these results involves abandoning the idea that particles should be defined in an observer-independent manner. They also suggest that one has to use something like the Everett-Wheeler interpretation of quantum mechanics because the back reaction andmore » hence the spacetime metric itself appear to be observer-dependent, if one assumes, as seems reasonable, that the detection of a particle is accompanied by a change in the gravitational field.« less
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.