Abstract
We use the Markov Chain Monte Carlo method to investigate a global constraints on the generalized Chaplygin gas (GCG) model as the unification of dark matter and dark energy from the latest observational data: the Constitution dataset of type supernovae Ia (SNIa), the observational Hubble data (OHD), the cluster X-ray gas mass fraction, the baryon acoustic oscillation (BAO), and the cosmic microwave background (CMB) data. In a non-flat universe, the constraint results for GCG model are, Ωbh2 = 0.0235+0.0021−0.0018 (1σ) +0.0028−0.0022 (2σ), Ωk = 0.0035+0.0172−0.0182 (1σ) +0.0226−0.0204 (2σ), As = 0.753+0.037−0.035 (1σ) +0.045−0.044 (2σ), α = 0.043+0.102−0.106 (1σ) +0.134−0.117 (2σ), and H0 = 70.00+3.25−2.92 (1σ) +3.77−3.67 (2σ), which is more stringent than the previous results for constraint on GCG model parameters. Furthermore, according to the information criterion, it seems that the current observations much support ΛCDM model relative to the GCG model.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have