Abstract
Precise time synchronization is an essential technique required for financial transaction systems, industrial automation and control systems, as well as land and ocean observation networks. However, the time synchronization signals based on the global-positioning-system (GPS), or global-navigation-satellite-system, are sometimes unavailable or only partially available in indoor, underground and underwater environments. In this work, the simultaneous and penetrative natures of the muon component of the extended air shower (EAS) were used as signals for time synchronization in environments with little or no GPS coverage. CTS was modeled by combining the results of previous EAS experiments with OCXO holdover precision measurements. The results have shown the capability of CTS to reach perpetual local time synchronization levels of less than 100 ns with a hypothetical detector areal coverage of larger than 2 × 10−4. We anticipate this level of areal coverage is attainable and cost-effective for use in consumer smartphone networks and dense underwater sensor networks.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have