Abstract
ABSTRACT We investigate a mechanism for accelerating cool (104 K) clouds in the circumgalactic medium (CGM) with cosmic rays (CRs), possibly explaining some characteristics of observed high-velocity clouds (HVCs). Enforcing CRs to stream down their pressure gradient into a region of slow streaming speed results in significant build-up of CR pressure which can accelerate the CGM. We present the results of the first two-dimensional magnetohydrodynamic (MHD) simulations of such ‘CR bottlenecks,’ expanding on simpler simulations in 1D. Although much more investigation is required, we find two main results. First, radiative cooling in the interfaces of these clouds is sufficient to keep the cloud intact to CR wave heating. Secondly, cloud acceleration depends almost linearly with the injected CR flux at low values (comparable to that expected from a Milky Way-like star formation rate), but scales sublinearly at higher CR fluxes in 1D simulations. 2D simulations show hints of sublinear dependence at high CR fluxes but are consistent with pure linear dependence up to the CR fluxes tested. It may therefore be plausible to accelerate cool clouds in the CGM to speeds of hundreds of km s−1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.