Abstract

Let [Formula: see text] be a finite group. There is a natural Galois correspondence between the permutation groups containing [Formula: see text] as a regular subgroup, and the Schur rings (S-rings) over [Formula: see text]. The problem we deal with in the paper, is to characterize those S-rings that are closed under this correspondence, when the group [Formula: see text] is cyclic (the schurity problem for circulant S-rings). It is proved that up to a natural reduction, the characteristic property of such an S-ring is to be a certain algebraic fusion of its coset closure introduced and studied in the paper. Based on this characterization we show that the schurity problem is equivalent to the consistency of a modular linear system associated with a circulant S-ring under consideration. As a byproduct we show that a circulant S-ring is Galois closed if and only if so is its dual.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.