Abstract

On 6 February 2023 (UTC), an earthquake doublet, consisting of the Mw 7.8 Pazarcik earthquake and the Mw 7.5 Elbistan earthquake, struck south-central Turkey and northwestern Syria, which was the largest earthquake that occurred in Turkey since the 1939 Erzincan earthquake. The faulting model of this earthquake was estimated based on the coseismic InSAR and GPS displacements. In addition, the best-fitting coseismic faulting model indicates that both the Pazarcik earthquake and the Elbistan earthquake were controlled by predominated left-lateral strike-slip motion, with slip peaks of 9.7 m and 10.8 m, respectively. The Coulomb failure stress (CFS) change suggests that the Pazarcik earthquake has a positive effect in triggering the rupture of the seismogenic fault of the Elbistan earthquake. Furthermore, these two main shocks promoted the occurrence of the Mw 6.3 strong aftershock. Additionally, it is found that the 2023 Turkey-Syria earthquake doublet increased the rupture risk of the Puturge segment of the EAF fault and the northern segment of the Dead Sea Fault (DSF). It is crucial to note that the northern segment of the DSF has not experienced a large earthquake in several centuries, highlighting the need for heightened attention to the potential seismic hazard of this segment. Finally, a deformation zone adjacent to the DSF was identified, potentially attributed to the motion of a blind submarine fault.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.