Abstract

Corynebacterium diphtheriae and Corynebacterium ulcerans use haemin and haemoglobin as essential sources of iron during growth in iron-depleted medium. C. diphtheriae and C. ulcerans mutants defective in haemin iron utilization were isolated and characterized. Four clones from a C. diphtheriae genomic library complemented several of the Corynebacteria haemin utilization mutants. The complementing plasmids shared an approximately 3 kb region, and the nucleotide sequence of one of the plasmids revealed five open reading frames that appeared to be organized in a single operon. The first three genes, which we have termed hmuT, hmuU and hmuV, shared striking homology with genes that are known to be required for haemin transport in Gram-negative bacteria and are proposed to be part of an ABC (ATP-binding cassette) transport system. The hmuT gene encodes a 37 kDa lipoprotein that is associated with the cytoplasmic membrane when expressed in Escherichi coli and C. diphtheriae. HmuT binds in vitro to haemin- and haemoglobin-agarose, suggesting that it is capable of binding both haemin and haemoglobin and may function as the haemin receptor in C. diphtheriae. This study reports the first genetic characterization of a transport system that is involved in the utilization of haemin and haemoglobin as iron sources by a Gram-positive bacterium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call