Abstract
Background and purposeMicroglial activation plays an important role in the onset and progression of neuropathic pain by producing a variety of pro-inflammatory cytokines that interact with neurons to enhance neuronal hyperexcitability. Corydalis decumbens (Thunb.) pers., a traditional Chinese medicine has been used to treat mild cancer pain, dementia and to remit cerebral ischemia in clinics. Phenylphthalide isoquinolines are the major type of metabolites of C. decumbens and one of the derivatives, Corydecumine G (Cor G) has been shown to inhibit neuronal excitability. The present study aims to investigate the analgesic efficacy of Cor G in neuropathic pain rat model, the effects of Cor G on microglia activation and the possible mechanisms. Experimental approachNeuropathic pain was modeled using chronic constriction sciatic nerve injury (CCI) in rats. Western blot, immunofluorescence, and qRT-PCR were used to evaluate the levels of protein and mRNA. Key resultsIntraperitoneal administration of Cor G concentration-dependently ameliorates mechanical and thermo allodynia, suppresses CCI-induced p38/ERK phosphorylation and spinal cord microglia activation, and attenuates the expression levels of NO, inos, Tnf-α, Pge2 in dorsal horn of L4-L6 spinal cord on the ligation side in CCI rats. Pretreatment with 30 μM Cor G decreased LPS-induced BV2 microglia activation, which occurred via the inos, Tnf-α, Il-1β, Il-6 and phospho-p38/ERK pathways. Conclusions and implicationsTaken together, we suggest that Cor G, the specific phthalide isoquinoline from traditional Chinese medicine Corydalis Decumbentis Rhizoma, may be promising for treatment of neuropathic pain.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have