Abstract

The coordinated proliferation and apoptosis of granulosa cells plays a critical role in follicular development. To identify the exact mechanisms of how stress-driven glucocorticoid production suppresses reproduction, granulosa cells were isolated from chicken follicles at different developmental stages and then treated with corticosterone. Using CCK-8, EDU and TUNEL assays, we showed that corticosterone could trigger both anti-proliferative and pro-apoptotic effects in granulosa cells from 6 to 8 mm follicles only, while depicting no influence on granulosa cells from any preovulatory follicles. High-throughput transcriptomic analysis identified 1362 transcripts showing differential expression profiles in granulosa cells from 6 to 8 mm follicles after corticosterone treatment. Interestingly, Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that 17 genes were enriched in the TGF-β signaling pathway, and 13 showed differential expression patterns consistent with corticosterone-induced effects. The differential expression profiles of these 13 genes were examined by quantitative real-time PCR in cultured chicken ovarian granulosa cells at diverse developmental stages following corticosterone challenge for a short (8 h) or long period (24 h). After 24 h of treatment, INHBB, FST, FMOD, NOG, ACVR1, SMAD1 and ID3 were the genes that responded consistently with corticosterone-induced proliferative and apoptotic events in all granulosa cells detected. However, only ACVR1, SMAD1 and ID3 could initiate coincident expression patterns after being treated for 8 h, suggesting their significance in corticosterone-mediated actions. Collectively, these findings indicate that corticosterone can inhibit proliferation and cause apoptosis in chicken ovarian prehierarchical, but not preovulatory granulosa cells, through impeding ACVR1-SMAD1-ID3 signaling presumptively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.