Abstract

The present study was designed to test whether GnRH regulates pituitary adenylate cyclase-activating polypeptide mRNA levels in a stage-dependent manner during follicle development in the rat ovary. The granulosa cells of preovulatory and immature follicles obtained from PMSG- and estrogen-treated rats, respectively, were cultured in serum-free conditions in the presence of various hormones. GnRH receptor mRNA expression was detected in both preovulatory and immature granulosa cells and was down-regulated by gonadotropins. Treatment of preovulatory granulosa cells with GnRH agonist stimulated pituitary adenylate cyclase-activating polypeptide mRNA levels in a dose-dependent manner. In situ hybridization analysis of cultured preovulatory follicles revealed that GnRH-induced pituitary adenylate cyclase- activating polypeptide signals were detected in granulosa cells, but not thecal cells. In immature granulosa cells, cotreatment with GnRH agonist suppressed FSH-stimulated pituitary adenylate cyclase-activating polypeptide mRNA levels in a dose-dependent manner, whereas treatment with GnRH alone had no effect. Furthermore, treatment with GnRH antagonist inhibited LH-induced pituitary adenylate cyclase-activating polypeptide gene expression in preovulatory granulosa cells, whereas it stimulated FSH-induced pituitary adenylate cyclase-activating polypeptide gene expression in immature granulosa cells. Interestingly, GnRH-stimulated pituitary adenylate cyclase-activating polypeptide mRNA levels in preovulatory granulosa cells was inhibited by arachidonyltri fluoromethyl ketone, an inhibitor of phospholipase A(2), but not by an inhibitor of protein kinase A or C. Lastly, treatment of preovulatory follicles with pituitary adenylate cyclase-activating polypeptide antagonist suppressed GnRH-stimulated progesterone production during 6--9 h of culture. Taken together, these results demonstrate the stage-dependent regulation of pituitary adenylate cyclase-activating polypeptide mRNA levels by GnRH, the stimulatory and inhibitory effect in granulosa cells of preovulatory and immature follicles, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call