Abstract

Cognitive impairment is a common outcome of ischemic stroke. Our previous work has shown that an experimental stroke in the cortex reduces activity in remote hippocampal layers in rats. This study seeks to uncover the underlying functional connections between these areas by analyzing changes to oscillatory activity, signal power, and communication. We induced an ischemic stroke in the left somatosensory cortex of rats and used linear micro-electrode arrays to simultaneously record from cortex and hippocampus under urethane anesthesia at two weeks and one month after stroke. We found significant increase in signal power, as well as an increase in the number of brain state changes in response to stroke. Our results suggest that the cortex modulates the activity and stability of hippocampal oscillations, which is disrupted following cortical stroke that can lead to cognitive impairment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call