Abstract

The connectivity of the cerebral cortex is diluted, with the probability of excitatory connections between even nearby pyramidal cells rarely more than 0.1, and in the hippocampus 0.04. To investigate the extent to which this diluted connectivity affects the dynamics of attractor networks in the cerebral cortex, we simulated an integrate-and-fire attractor network taking decisions between competing inputs with diluted connectivity of 0.25 or 0.1, and with the same number of synaptic connections per neuron for the recurrent collateral synapses within an attractor population as for full connectivity. The results indicated that there was less spiking-related noise with the diluted connectivity in that the stability of the network when in the spontaneous state of firing increased, and the accuracy of the correct decisions increased. The decision times were a little slower with diluted than with complete connectivity. Given that the capacity of the network is set by the number of recurrent collateral synaptic connections per neuron, on which there is a biological limit, the findings indicate that the stability of cortical networks, and the accuracy of their correct decisions or memory recall operations, can be increased by utilizing diluted connectivity and correspondingly increasing the number of neurons in the network, with little impact on the speed of processing of the cortex. Thus diluted connectivity can decrease cortical spiking-related noise. In addition, we show that the Fano factor for the trial-to-trial variability of the neuronal firing decreases from the spontaneous firing state value when the attractor network makes a decision.This article is part of a Special Issue entitled “Neural Coding”.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.