Abstract

Selective laser melting (SLM) technology is ushering in a new era of advanced industrial production of metal components. It is of great importance to understand the relationship between the surface features and electrochemical properties of manufactured parts. This work studied the influence of surface orientation on the corrosion resistance of 316L stainless-steel (SS) components manufactured with SLM. The corrosion resistance of the samples was measured using linear polarization resistance (LPR) and electromechanical noise (EN) techniques under three different environments, H2O, 3.5 wt.% NaCl, and 20% H2SO4, analyzing the horizontal (XY) and vertical (XZ) planes. The microstructure and morphology of the samples were obtained by optical (OM) and scanning electron microscopy (SEM). The obtained microstructure showed the grains growing up from the fusion line to the melt pool center and, via SEM-EDS, the presence of irregular and spherical pores was observed. The highest corrosion rate was identified in the H2SO4 solution in the XZ plane with 2.4 × 10−2 mm/year and the XY plane with 1.31 × 10−3 mm/year. The EN technique along with the skewness factor were used to determine the type of corrosion that the material developed. Localized corrosion was observed in the NaCl electrolyte, for the XY and XZ planes (−1.65 and −0.012 skewness factors, respectively), attacking mainly the subgrains of the microstructure and, in some cases, the pores, caused by Cl ions. H2O and H2SO4 solutions presented a uniform corrosion mechanism for the two observed orientations. The morphology identified by SEM was correlated with the results obtained from the electrochemical techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.