Abstract
Niobium disilicide shows good oxidation resistance in high-temperature oxidizing atmosphere and can be used as oxidation resistant coatings. However, these coatings are also required to have good environmental resistance, where corrosion by calcium‑magnesium-alumina-silicate (CMAS) represents a potential threat to the coating during the application. The aim of this work is to clarify the interaction between the AlY modified silicide coating on NbSi based alloy and the CMAS. The results indicate that the coating consists mainly of a disilicide layer and a transitional layer. The disilicide layer is mainly composed of (Nb,X)Si2 with (Zr,X′)Si2 particles dispersed in it. During the CMAS exposure, both the silicide coating and the as-formed SiO2-based composite oxide scale can be dissolved by the melted CMAS. The increase of temperature accelerates the CMAS corrosion process. The accumulation of dissolved Si at the interface between the CMAS and coating leads to the in-situ crystallization of Cristobalite-SiO2, which can arrest the melted CMAS, offering a good protection against CMAS attack. The (Nb,X)Si2 coating exhibits a two stage of CMAS corrosion process. The first one is the dissolution of the coating until SiO2 crystallization. The second one is the growth of the Cristobalite-SiO2 layer, during which the coating elements will be oxidized and can then diffuse into the melted CMAS through the Cristobalite-SiO2 layer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.