Abstract

Pit initiation, growth, and coalescence corrosion mechanisms of an AE44 magnesium alloy subjected to a salt-water environment were quantified. Stereological quantities were evaluated using optical microscopy, scanning electron microscopy, and laser beam profilometry. Three corrosion mechanisms clearly arose: pitting, intergranular, and general. Pitting began as the result of localized galvanic dissolution between the intermetallics and magnesium matrix. Intergranular corrosion arose as pits coalesced. General corrosion arose by dissolution and regeneration of a Mg(OH) 2 film at a continuous rate. Stereological quantification demonstrated that the corrosion pit number density and pit radius size distribution initially increased before decreasing due to pit coalescence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.