Abstract

In situ X-ray computed tomography (X-ray CT) is used to investigate the effects of characteristic microstructural features on the pitting initiation and propagation in austenitic stainless steel specimens prepared with laser powder bed fusion (LPBF) additive manufacturing. In situ X-ray CT in probing the mechanism and kinetics of localized corrosion is demonstrated by immersing two LPBF specimens with different porosities in an aggressive ferric chloride solution for the evaluation of corrosion. X-ray CT images are acquired from the specimens after every 8hours of immersion over an extended period of time (216hours). Corrosion pit growth is then quantitatively analyzed with a data-constrained modeling method. The pitting growth mechanism of LPBF stainless steel is found to be different from that of conventional stainless steels. More specifically, the mechanism of corrosion pit initiation is closely correlated with the original lack of fusion porosity (LOF) distribution on the surface of the specimens and preferential pit propagation through the LOF pores inside the specimens. Pit growth kinetics are derived from pit volume changes determined through 3D data analysis. The pit growth kinetics in LPBF specimens are found to vary in the initial pit formation, competitive pit propagation, and the dominant pit growth stages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.