Abstract

The mechanism was investigated by which pit initiation on aluminum foils during anodic etching is affected by the use of phosphoric acid as a pretreatment. Positron annihilation measurements, coupled with atomic force microscope images of foils with chemically stripped oxide layers, show evidence that the pretreatment introduces nanometer-scale voids in the metal, at or near the metal-oxide film interface. The location and morphology of voids compares favorably with those of pits, suggesting that voids act as pit initiation sites. The number of void sites was estimated to be the same magnitude as the maximum number of pits formed by anodic etching. Capacitance measurements further indicate that the treatment decreases the surface oxide thickness to about 2 nm. Formation of large numbers of pits during etching is promoted by either reduced oxide thicknesses or more positive etching potentials. It is suggested that the rate of initiation of pits at interfacial voids is determined by the electric field in the overlying surface oxide. © 2002 The Electrochemical Society. All rights reserved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.