Abstract

The corrosion protective behaviour of bis-[triethoxysilylpropyl]tetrasulphide (BTESPT) silane film formed by partly hydrolysed BTESPT on AZ31 Mg alloy was investigated. Fourier transform infrared spectroscopy (FTIR) was used for structural characterisation of the silane film. Scanning electron microscope (SEM) and energy dispersive X-ray (EDS) analysis were used for observation of surface morphology and elements analysis of the film. The corrosion behaviours of bare and the silane treated AZ31 Mg alloy in 3·5 wt-%NaCl solution were studied using electrochemical polarisation test, electrochemical impedance spectroscopy (EIS) and immersion test. The results demonstrate that bare AZ31 Mg alloy endures severe corrosion even in NaCl water solution at pH 12, although the corrosion is lighter than that in neutral and acidic NaCl water solution, and that the BTESPT silane film can improve the corrosion protection performances of AZ31 Mg alloy and a lower corrosion rate correlated with higher pH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.