Abstract

ABSTRACTA glass-bonded sodalite ceramic waste form (CWF) has been developed to immobilize electrorefiner salt wastes from electrometallurgical treatment of spent sodium-bonded reactor fuel for disposal. A degradation model is being developed to support qualification of the CWF for disposal in the federal high-level waste disposal system. The parameter values in the waste form degradation model were previously determined from the dissolution rates measured in MCC-1 tests conducted at 40, 70, and 90°C. The results of several series of tests that were conducted to confirm the applicability of the dissolution rate model and model parameters are presented in this paper: (1) Series of MCC-1 tests were conducted in five dilute buffer solutions in the pH range of 4.8 – 9.8 at 20°C with hot isostatic pressing (HIP) sodalite, HIP glass, and HIP CWF. The results show that the model adequately predicts the dissolution rate of these materials at 20°C. (2) Tests at 20 and 70°C with CWF made by pressureless-consolidation (PC) indicate that the model parameters extracted from the results of tests with HIP CWF can be applied to PC CWF. (3) The dissolution rates of a glass made with a composition corresponding to 80 wt. % glass and 20 wt. % sodalite were measured at 70°C to evaluate the sensitivity of the rate to the composition of binder glass in the CWF. The dissolution rates of the modified binder glass were indistinguishable from the rates of the binder glass.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call