Abstract

Corrosion mechanism of 316 L stainless steel produced by laser powder bed fusion-hot isostatic pressing (LPBF-HIP) and powder metallurgy-hot isostatic pressing (PM-HIP) is studied with in-situ electrochemical impedance measurements coupled to detailed oxide film characterization. Quantitative analysis of impedance spectra using the Mixed-Conduction Model and estimation of local kinetic and transport parameters by interpretation of in-depth elemental composition profiles indicated lower corrosion and oxidation rates of LPBF-HIP and PM-HIP materials in comparison to conventional wrought 316 L. This owes to a higher fraction of low-angle grain boundaries, smaller grain size, the presence of nano-sized oxide particles and elevated Cr and Ni contents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call