Abstract

Corrosion mechanism of 316 L stainless steel produced by laser powder bed fusion-hot isostatic pressing (LPBF-HIP) and powder metallurgy-hot isostatic pressing (PM-HIP) is studied with in-situ electrochemical impedance measurements coupled to detailed oxide film characterization. Quantitative analysis of impedance spectra using the Mixed-Conduction Model and estimation of local kinetic and transport parameters by interpretation of in-depth elemental composition profiles indicated lower corrosion and oxidation rates of LPBF-HIP and PM-HIP materials in comparison to conventional wrought 316 L. This owes to a higher fraction of low-angle grain boundaries, smaller grain size, the presence of nano-sized oxide particles and elevated Cr and Ni contents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.