Abstract

High-performance additives manufactured by Al alloys provide significant potential for lightweight applications and have attracted much attention nowadays. However, there is no research on Sc, Er and Zr microalloyed Al alloys, especially concerning corrosion behavior. Herein, crack-free and dense Al-Mg-Mn-Sc-Er-Zr alloys were processed by selective laser melting (SLM). After optimizing the process parameters of SLM, the anisotropic corrosion behavior of the sample (volume energy density of 127.95 J·mm−3) was investigated by intergranular corrosion (IGC) and electrochemical measurements. The results showed that the XY plane of the as-built sample is less prone to IGC, and it also has a higher open circuit potential value of −901.54 mV, a higher polarization resistance of 2.999 × 104 Ω·cm2, a lower corrosion current of 2.512 μA·cm−2 as well as passive film with superior corrosion resistance compared to the XZ plane. According to our findings, the XY plane has superior corrosion resistance compared to the XZ plane because it has fewer primary phases of Al3(Sc, Er, Zr) and Al2MgO4, which can induce localized corrosion. Additionally, a higher fraction of low-angle grain boundaries (LAGBs) and a stronger (001) texture index along the building direction are also associated with better corrosion resistance of the XY plane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.