Abstract

The corrosion inhibition characteristics of the derivatives of biopolymer hydroxypropyl methylcellulose (HPMC), hydroxypropyl methylcellulose phthalate (HPMCP), and hydroxypropyl methylcellulose acetate succinate (HPMCAS) film are investigated. Based on electrochemical impedance spectroscopic measurements and potentiodynamic polarization, the corrosion inhibition performance of high speed steel coated with HPMC derivatives is evaluated. The Nyquist plot and Tafel polarization demonstrate promising anti-corrosion performance of HPMC and HPMCP. With increasing film thickness, both materials reveal improvement in corrosion inhibition. Moreover, because of a hydrophobic surface and lower moisture content, HPMCP shows better anti-corrosion performance than HPMCAS. The study is of certain importance for designing green corrosion inhibitors of high speed steel surfaces by the use of biopolymer derivatives.

Highlights

  • There are three primary methods of corrosion control: reducing metal oxidation [1], decreasing corrosion of corrosive liquids [2], and isolating metal from the corrosive environment via dry films [3,4,5]

  • Several researchers have investigated the effects of polymeric corrosion inhibitors, such as polyamide compounds [9], polyacrylic acid [10], polymeric materials [11], and cellulosic polymers [12], which show considerable promised anticorrosion behavior

  • The objective of the present study is to evaluate the anti-corrosion performance of biopolymer hydroxypropyl methylcellulose (HPMC) derivatives in a saline solution

Read more

Summary

Introduction

There are three primary methods of corrosion control: reducing metal oxidation [1], decreasing corrosion of corrosive liquids [2], and isolating metal from the corrosive environment via dry films [3,4,5]. The common approach is to add corrosion inhibitors to form a physical adsorption layer on the surface, thereby blocking the penetration of active substances and reducing corrosion [6,7,8]. According to the requirements of the Paris climate agreements and sustainable development, extensive studies on green materials for anti-corrosive films have recently been conducted [13,14,15,16]. Owing to its high film forming ability [17]

Objectives
Methods
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.