Abstract
Moisture sorption by polymeric carriers used for the development of amorphous solid dispersions (ASDs) plays a critical role in the physical stability of dispersed drugs since moisture may decrease glass transition temperature (Tg) and thereby increase molecular mobility of drugs leading to their crystallization. To assist the selection of appropriate polymers for ASDs, we conducted moisture sorption by five types of cellulosic polymers, namely, hydroxypropyl cellulose (HPC), hydroxypropyl methyl cellulose (HPMC), hydroxypropyl methyl cellulose acetate succinate (HPMCAS), hydroxypropyl methyl cellulose phthalate (HPMCP), and ethyl cellulose (EC), as functions of relative humidity (10 to 90% RH) and temperature (25 and 40 °C). The moisture sorption was in the order of HPC>HPMC>HPMCP>HPMCAS>EC, and there was no significant effect of the molecular weights of polymers on moisture uptake. There was also less moisture sorption at 40 °C than that at 25 °C. Glass transition temperatures (Tg) of the polymers decreased with the increase in moisture content. However, the plasticizing effect by moisture on HPC could not be determined fully since, despite being amorphous, there were very little baseline shifts in DSC scans. There was also very shallow baseline shift for HPMC at >1% moisture content. In contrast, Tg of HPMCAS and HPMCP decreased in general agreement with the Gordon-Taylor/Kelley-Bueche equation, and EC was semicrystalline having both Tg and melting endotherm, with only minor effect of moisture on Tg. The results of the present investigation would lead to a systematic selection of polymeric carriers for ASDs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.