Abstract

ABSTRACT Magnesium implants are susceptible to premature failure due to corrosion and cyclic loading within the body. Composite fibre coatings are effective at reducing corrosion in magnesium materials. In this study, an Mg/HA composite was fabricated, and microscopic and mechanical characterisation was performed. The samples were then electrospun with PCL/2.5%HA fibres, and corrosion behaviour was explored by immersion tests. Finally, rotary bending fatigue tests in air and SBF environments were conducted. According to the findings, the Mg/2.5%HA and coated Mg/2.5%HA samples can withstand more than 1 million cycles under 60 MPa. Compared to pure Mg, Mg/2.5%HA has better corrosion and corrosion fatigue resistance. Furthermore, a PCL/2.5%HA fibre coating can increase the corrosion fatigue resistance of Mg/2.5%HA as a result of the polymer scaffold, passive protective layer, and apatite adsorption capability. Results suggest that Mg/2.5%HA composites coated with PCL/2.5%HA fibres are potentially suitable for use in orthopaedic biomaterials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call