Abstract
AbstractIn‐service bridge wires often fail prior to the design life subjected to alternating stresses and environmental erosion. In this paper, a novel corrosion fatigue test device, integrating fatigue testing machine and electrochemical accelerated corrosion assemblies, was developed to characterize the corrosion fatigue and electrochemical behaviour of the wires. Using the developed device, corrosion fatigue tests of corroded bridge wires under different corrosion and loading conditions were conducted. Electrochemical characteristics, corrosion fatigue behaviour, failure mechanism, and so forth were investigated according to electrochemical measurements, fracture morphologies and the lifetime of wires. Results evidence the synchronization of corrosion and fatigue and show the accelerated corrosion due to static and fatigue stresses. Additionally, cracking and fracture induced by multiple crack initiation was dominant in corrosion fatigue of corroded wires, and the coexistence of multiple corrosion pits decreased the lifetime significantly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Fatigue & Fracture of Engineering Materials & Structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.