Abstract

Thick plate joints of 7085-T7451 aluminum alloy were obtained through both single-side and double-side friction stir welding (SS or DS-FSW). The chloride ions effects on the corrosion behavior of the top and bottom surfaces of the joints were examined by cyclic potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM). Results show that the corrosion susceptibility was suppressed significantly in the weld nugget zone, while the base material and heat-affected zone were prone to be corrosion attacked. For the SS-FSWed joint, the top surface showed a higher corrosion resistance than that of the bottom surface, but the larger corrosive heterogeneity was observed between the top and bottom surfaces compared with the two welds of DS-FSWed joint, which was confirmed by the morphology of corrosion attack. A deep insight on the microstructure of the joints indicates that the intermetallic particles played a key role in the corrosion behavior of the FSWed AA7085 aluminum alloy joints in chloride solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.