Abstract

The plates of AA5086 aluminium alloy were joined together by friction stir welding at a fixed rotation speed of 1000 r/min various welding speeds ranging from 63 to 100 mm/min. Corrosion behavior of the parent alloy (PA), the heat affected zone (HAZ), and the weld nugget zone (WNZ) of the joints were studied in 3.5% (mass fraction) aerated aqueous NaCl solution by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The corrosion susceptibility of the weldments increases when the welding speed increases to 63 and 100 mm/min. However, the value of corrosion rate in the weldments is lower than that in the PA. Additionally, the corrosion current density increases with increasing the welding speed in the HAZ and the WNZ. On the contrary, the corrosion potential in the WNZ appears more positive than in the HAZ with decreasing the welding speed. The WNZ exhibits higher resistance compared to the HAZ and the PA as the welding speed decreases. The results obtained from the EIS measurements suggest that the weld regions have higher corrosion resistance than the parent alloy. With increasing the welding speed, the distribution and extent of the corroded areas in the WNZ region are lower than those of the HAZ region. In the HAZ region, in addition to the pits in the corroded area, some cracks can be seen around the corroded areas, which confirms that intergranular corrosion is formed in this area. The alkaline localized corrosion and the pitting corrosion are the main corrosion mechanisms in the corroded areas within the weld regions. Crystallographic pits are observed within the weld regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call