Abstract

The effects of fluoride concentrations and pH on the corrosion behavior of pure titanium, Ti-6Al-4V, Ti-6Al-7Nb alloys and a new Ti alloy adding palladium, which is expected to promote a repassivation of Ti were examined by anodic polarization and corrosion potential measurements. The amount of dissolved Ti was analyzed by inductively coupled plasma mass spectroscopy. The surface of the specimen was analyzed by X-ray photoelectron spectroscopy before and after the measurement. Pure Ti, Ti-6Al-4V and Ti-6Al-7Nb alloys were easily corroded even in a low fluoride concentration in an acidic environment. The corrosion resistance of Ti-0.2Pd alloy was greater than those of pure Ti, Ti-6Al-4V and Ti-6Al-7Nb alloys in the wide range of pH and fluoride concentrations. The high corrosion resistance of Ti-0.2Pd alloy was caused by the surface enrichment of Pd promoting a repassivation of Ti. The Ti-0.2Pd alloy is expected to be useful as a new Ti alloy with high corrosion resistance in dental use.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.