Abstract
The corrosion behavior of stainless steel exposed to a simulated salt lake atmosphere has been investigated by analyzing the evolution of surface morphologies and corrosion products, the initiation and development of pits, and the electrochemical characteristics. The results indicated that (Mg6Fe2(OH)16(CO3)(H2O)4.5)0.25, a layered double hydroxide, has been detected for the first time in the corrosion products formed on stainless steel exposed to a simulated salt lake atmosphere. The specimens exposed to MgCl2 deposit conditions were corroded more severely than those exposed to NaCl deposit conditions, which was attributed to the differences in the deliquescence relative humidity and efflorescence relative humidity values of MgCl2 and NaCl. In addition, a special corrosion morphology consisting of a concentric circle of yellowish material was observed on the specimens exposed to MgCl2 deposit conditions, which was attributed to the formation of Mg(OH)2, inhibiting the diffusion and migration of OH− ions to the anode region. The maximum pit depth followed a power function with respect to corrosion time. The corrosion mechanism of stainless steel exposed to a simulated salt lake atmosphere is also discussed.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have