Abstract
Object reconstruction in optical imaging through complex scattering media is challenging. The existence of multiple and dynamic scatterings in complex environments leads to nonlinear reconstruction problem, inducing significant complexity in object reconstruction. In this paper, we report a correspondence imaging approach to reconstructing high-quality objects through complex scattering media where conventional methods cannot work. To complete formation mechanism of correspondence imaging through complex scattering media, a rectified theory is derived to implement object reconstruction. In the proposed method, temporal correction is introduced to eliminate the effect of dynamic scaling factors which physically exist in complex scattering environments. Then, a series of light intensities collected by a single-pixel bucket detector can be temporally corrected for the proposed correspondence imaging through complex scattering media. A series of optical experiments are conducted to show advantages of the proposed method over conventional methods in complex scattering environments. In addition, the proposed principle can be flexibly used with other methods to further enhance quality of the reconstructed objects. The proposed method provides a powerful tool to reconstruct high-quality objects through complex scattering media with single-pixel measurements, and the proposed method could provide an insight into correspondence imaging through complex scattering media.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.