Abstract

It is well recognized that it is challenging to realize high-fidelity and high-robustness ghost transmission through complex media in free space using coherent light source. In this paper, we report a new method to realize high-fidelity and high-robustness ghost transmission through complex media by generating random amplitude-only patterns as 2D information carriers using physics-driven untrained neural network (UNN). The random patterns are generated to encode analog signals (i.e., ghost) without any training datasets and labeled data, and are used as information carriers in a free-space optical channel. Coherent light source modulated by the random patterns propagates through complex media, and a single-pixel detector is utilized to collect light intensities at the receiving end. A series of optical experiments have been conducted to verify the proposed approach. Experimental results demonstrate that the proposed method can realize high-fidelity and high-robustness analog-signal (ghost) transmission in complex environments, e.g., around a corner, or dynamic and turbid water. The proposed approach using the designed physics-driven UNN could open an avenue for high-fidelity free-space ghost transmission through complex media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.