Abstract

Characterizing the novel properties of layered van der Waals materials is key for their application in functional devices. A better understanding of this type of material requires correlative imaging of diverse nanoscale material properties. Within this class of materials, CuInP2S6 (CIPS) has received a significant degree of interest due to its ionically mediated room temperature ferroelectricity. Moreover, it is possible to form stable self-assembled heterostructures of ferroelectric CuInP2S6 (CIPS) and non-ferroelectric (i.e., lacking Cu) In4/3P2S6 (IPS) phases, by controlling the targeted composition and kinetics of synthesis. In this work, we present a correlative nanometric imaging study of the phononic modes and piezoelectricity of the phase-separated thin heteroepitaxial CIPS/IPS flakes. We show that it is possible to isolate the different phononic modes of the two phases by spatially correlating them with their distinct ferroelectric behavior. The coupling of our experimental data with unsupervised learning statistical methods enables unraveling specific Raman peaks that are characteristic of each chemical phase (CIPS and IPS) present in the composite sample, discarding the less significant ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.