Abstract
Transcription is highly regulated by a variety of transcription factors, among which NusA and NusG act contradictorily in Escherichia coli (E. coli) that NusA stabilizes a paused RNA polymerase (RNAP) and NusG suppresses it. The mechanism of the NusA and NusG regulations on RNAP transcription has been addressed, but their effect on the conformational changes of the transcription bubble correlated with transcription kinetics remains elusive. By using single-molecule magnetic trap, we identify a reduction in the transcription rate of ∼40% events by NusA. Although the rest ∼60% of transcription events exhibit unaffected transcription rates, a NusA-enhanced standard deviation of the transcription rate is observed. NusA remodeling also increases the extent of DNA unwinding in the transcription bubble by 1-2 base pairs, which can be reduced by NusG. The NusG remodeling is more significant on the RNAP molecules with reduced transcription rates rather than those without. Our results provide a quantitative view on the mechanisms of transcriptional regulation by NusA and NusG factors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.