Abstract

This study intends to investigate the correlations of miR-124a and miR-30d with clinicopathological features of breast cancer (BC) patients with type 2 diabetes mellitus (T2DM). A total of 72 BC patients with T2DM (diabetic group) and 144 BC patients without T2DM (non-diabetic group) were enrolled in this study. Blood glucose was detected by glucose oxidase methods. Glycosylated hemoglobin (HbA1c) was measured by high performance liquid chromatography. Fasting insulin (FIns) was measured by chemiluminescent microparticle immunoassay. Automatic biochemical analyzer was used to detect triglyceride, total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C). Estradiol (E2) was detected by radioimmunoassay. Homeostasis model assessment was applied to assess the insulin resistance (HOMA-IR) and β-cell insulin secretion (HOMA-IS). The expressions of miR124a and miR-30d were measured by quantitative real-time polymerase chain reaction (qRT-PCR). There were significant differences in age, the ratio of menopause, body mass index (BMI), HDL-C, TC, 2-h plasma glucose (2hPG), FIns, HbA1c, HOMA-IS and HOMA-IR between the diabetic and non-diabetic groups. The diabetic group had higher incidence of lymph node metastasis than non-diabetic group. The miR-124a expression was down-regulated while the miR-30d expression was up-regulated in BC patients with T2DM. The correlation analysis showed that miR-124a expression was positively correlated with HDL-C, while it was negatively correlated with age, HbA1c, LDL-C and E2. However, the miR-30d expression was negatively correlated with HDL-C but positively correlated with age, HbA1c, LDL-C and E2. In conclusion, miR-124a and miR-30d may be correlated with clinicopathological features of BC patients with T2DM. The miR-124a and miR-30d could serve as novel biomarkers for early diagnosis of BC in patients with T2DM.

Highlights

  • Breast cancer (BC) is one of the most common malignant neoplasms for females with 1.4 million new diagnoses a year worldwide, and is one of the leading causes of cancer-related death (Ban and Godellas 2014)

  • Significant differences were observed in high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), FPG, 2-h plasma glucose (2hPG), Fasting insulin (FIns), HbA1c, HOMA of β-cell insulin secretion (HOMA-IS), HOMA-IR and E2 between diabetic group and non-diabetic group

  • MiR-124a and miR-30d may be correlated with clinicopathological features of breast cancer (BC) patients with type 2 diabetes mellitus (T2DM)

Read more

Summary

Introduction

Breast cancer (BC) is one of the most common malignant neoplasms for females with 1.4 million new diagnoses a year worldwide, and is one of the leading causes of cancer-related death (Ban and Godellas 2014). MicroRNAs (miRs) have been reported to be implicated in various malignancies and involved in a variety of biological processes, including cell proliferation, differentiation, apoptosis, and metastasis (Di Leva et al 2014; Farazi et al 2013). MiR-30d regulates various physiological processes in normal tissues or cancer cells, including development, metastasis, apoptosis, senescence, proliferation and differentiation (Bridge et al 2012; Zhao et al 2012). MiR-30d may be acted as a novel oncogene that may be implicated in the development of tumors and homeostasis, and may be served as a potential useful biomarker or drug target in human malignancies (Yang et al 2013). MiR-30d plays a key role in activating glucose-induced insulin gene transcription and in avoiding beta-cell functions impaired by pro-inflammatory cytokines, which may act as a potential target for diabetes intervention (Zhao et al 2012)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call