Abstract
Block copolymer electrolytes have been shown to increase the cycle life of rechargeable batteries that utilize high capacity lithium anodes. Most block copolymer electrolyte studies have been centered on polystyrene-b-poly(ethylene oxide) (SEO) mixed with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt and are limited to salt concentrations in the vicinity of r ≡ [Li]/[EO] = 0.1, where [Li] and [EO] are the concentration of lithium and ethylene oxide moieties, respectively, as the conductivity of poly(ethylene oxide) (PEO) homopolymer electrolytes is maximized at this concentration. In this work, we study the morphology and conductivity of electrolytes derived from a high molecular weight SEO block copolymer over the wide LiTFSI concentration range of 0 ≤ r ≤ 0.550. For electrolytes with r ≥ 0.125, the crystallization of PEO–LiTFSI complexes with stoichiometric ratios of 6:1, 3:1, or 2:1 (EO:Li) is shown to correlate with morphology as determined by small-angle X-ray scattering (SAXS) and scannin...
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have