Abstract

In this paper an attempt was made to define microstructural properties of carbon fiber/PP composites, with respect to fiber surface chemistry and morphology. In order to define the effects of the fiber surface sizings and morphology on the polymer microstructure, the interphase and mechanical properties of the composites, carbon fibers with similar, but not identical surface chemistry (CH and CT) were used. Characterization was performed by several techniques: SEM, POM, reflection microscopy, DSC, FTIR, XPS, contact angle measurements. For microstructural analysis, the geometrical method, method of intercept and DIF method were used. It was found that both carbon fibers have a strong influence on the nucleation mechanism and crystallization as well as on the microstructural parameters in the model and macro composites. Nucleation efficiency of the fibers has been confirmed by the nucleation parameter Q, measured by Muchova–Lednicky method and by the interfacial energy parameters. Microstructural analysis based on the photographs obtained by POM, SEM and reflection microscopy has shown that in the CH/PP model and macrocomposites the sieve-grain network was formed, which indicates better mechanical properties. The results obtained for the macromechanical properties of PP composites reinforced with CH and CT have confirmed the prediction based on micostructural analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.