Abstract
The discovery of superconductivity in hole-doped infinite layer nickelates, RNiO2 (R = Nd, Pr, La) has resulted in sustained interest in the field. A definitive picture of low-energy many-body states has not yet emerged. Here we provide insights into the low-energy physics, based on our embedded dynamical mean-field theory calculations, and propose a correlation (U)-temperature (T) phase diagram. The key features are a low-T Fermi liquid (FL) phase, a high-T Curie-Weiss regime, and an antiferromagnetic phase in a narrow U-T region. We associate the onset of the FL phase with partial screening of Ni-d moments; however, full screening occurs at lower temperatures. This may be related to insufficiency of conduction electrons to effectively screen the Ni-d moments, suggestive of Nozieres Exhaustion Principle. Our results suggest that RNiO2 are in the paramagnetic state, close to an antiferromagnetic dome, making magnetic fluctuations feasible. This may be consequential for superconductivity.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have