Abstract
A family of polytopes, correlation polytopes, which arise naturally in the theory of probability and propositional logic, is defined. These polytopes are tightly connected to combinatorial problems in the foundations of quantum mechanics, and to the Ising spin model. Correlation polytopes exhibit a great deal of symmetry. Exponential size symmetry groups, which leave the polytope invariant and act transitively on its vertices, are defined. Using the symmetries, a large family of facets is determined. A conjecture concerning the full facet structure of correlation polytopes is formulated (the conjecture, however, implies that NP=co-NP). Various complexity results are proved. It is shown that deciding membership in a correlation polytope is an NP-complete problem, and deciding facets is probably not even in NP. The relations between the polytope symmetries and its complexity are indicated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.